【bone development】相关文献(3)
  • 《山西医科大学学报》 CSTPCD 2004年6期

    Objective To investigate whether the osteocyte apoptosis exists in orbital bones and to discuss its effect on the orbital development.Methods Seven young Newzealand white rabbits were selected as experimental animals.At two-month-old ,all rabbits were killed and then zygomas were made into paraffin and electron microscope sections after they were decalcified.Apoptosis of osteocytes was observed by light microscope and transmission electron microscopes and detected by TUNEL staining.Results The classical apoptosis of osteocytes was found under light and transmission electron microscopes.Apoptosis of osteocytes was diffused irregularly in the zygomatic tissue. Conclusion Osteocyte can apoptosis and it may participate in the development of the bony orbit.

    orbit bone development osteocytes Apoptosis rabbits
  • Indian hedgehog (Ihh) is an essential signal that regulates endochondral bone development. We have previously shown that Wnt7b promotes osteoblast differentiation during mouse embryogenesis, and that its expression in the perichondrium is dependent on Ihh signaling. To test the hypothesis that Wnt7b may mediate some aspects of Ihh function during endochondral bone development, we activated Wnt7b expression from the R26-Wnt7b allele with Col2-Cre in the Ihh2/2 mouse. Artificial expression of Wnt7b rescued vascularization of the hypertrophic cartilage in the Ihh2/2 mouse, but failed to restore orthotopic osteoblast differentiation in the perichondrium. Similarly, Wnt7b did not recover Ihh-dependent perichondral bone formation in the Ihh2/2;Gli32/2 embryo. Interestingly, Wnt7b induced bone formation at the diaphyseal region of long bones in the absence of Ihh, possibly due to increased vascularization in the area. Thus, Ihh-dependent expression of Wnt7b in the perichondrium may contribute to vascularization of the hypertrophic cartilage during endochondral bone development.

    bone development osteoblast differentiation
  • Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.

    bone development growth factor receptor molecular mechanisms Human Skeleton Bone diseases
没有更多内容啦~
爱学术网-期刊论文服务平台 2014-2022 爱学术网版权所有
Copyright © 2014-2022 爱学术网 All Rights Reserved. 备案号:苏ICP备2020050931号 版权所有:南京传视绛文信息科技有限公司