The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts. This includes the following areas. ordered topological vector spaces (including Banach lattices and ordered Banach spaces) positive and order bounded operators (including spectral theory, operator equations, ergodic theory, approximation theory and interpolation theory) Banach spaces (including their geometry, unconditional and symmetric structures, non-commutative function spaces and asymptotic theory) C and other operator algebras (especially non-commutative order theory) geometric and probabilistic aspects of functional analysis partial differential equations (including maximum principles, diffusion, elliptic and parabolic equations; and subsolutions) positive solutions for functional equations positive semigroups potential theory and harmonic functions harmonic analysis variational analysis and variational inequalities optimization and optimal control convex and nonsmooth analysis complementarity theory maximal element principles measure theory (including Boolean algebras and stochastic processes) non-standard analysis and Boolean valued models Applications of the above fields to other disciplines and areas
实证研究的目的是为所有分析领域的高质量原创研究及其在其他学科中的应用提供一个出口,这些学科与实证研究的主题有着明确和实质性的联系。具体来说,那些阐明实证在其他学科(包括但不限于经济学、工程学、生命科学、物理学和统计决策理论)中的应用的文章是受欢迎的。 实证研究的范围是发表受实证概念影响的数学及其应用领域的原创论文。 这包括以下领域。 有序拓扑向量空间(包括巴拿赫格和有序巴拿赫空间) 正序有界算子(包括谱理论、算子方程、遍历理论、逼近理论和插值理论) 巴拿赫空间(包括几何、无条件对称结构、非交换函数空间和渐近理论) C和其他算子代数(特别是非交换序理论) 函数分析的几何和概率方面 偏微分方程(包括极大原理、扩散、椭圆和抛物线方程;和上) 函数方程的正解 积极的半群 势能理论和调和函数 谐波分析 变分分析和变分不等式 优化与最优控制 凸和非光滑分析 互补理论 最大元素的原则 测度理论(包括布尔代数和随机过程) 非标准分析和布尔值模型 上述领域在其他学科和领域的应用
期刊ISSN
|
1385-1292 |
最新的影响因子
|
1 |
最新CiteScore值
|
0.74 |
最新自引率
|
15.30% |
期刊官方网址
|
http://link.springer.com/journal/11117 |
期刊投稿网址
|
https://www.editorialmanager.com/post/default.aspx |
通讯地址
|
SPRINGER, VAN GODEWIJCKSTRAAT 30, DORDRECHT, NETHERLANDS, 3311 GZ |
偏重的研究方向(学科)
|
数学-数学 |
出版周期
|
Quarterly |
平均审稿速度
|
>12周,或约稿 |
出版年份
|
1997 |
出版国家/地区
|
NETHERLANDS |
是否OA
|
No |
SCI期刊coverage
|
Science Citation Index Expanded(科学引文索引扩展) |
NCBI查询
|
PubMed Central (PMC)链接 全文检索(pubmed central) |
最新中科院JCR分区
|
大类(学科)
小类(学科)
JCR学科排名
数学
MATHEMATICS(数学) 2区
91/310
|
|||||||
最新的影响因子
|
1 | |||||||
最新公布的期刊年发文量 |
|
|||||||
总被引频次 | 614 | |||||||
特征因子 | 0.001800 | |||||||
影响因子趋势图 |
2007年以来影响因子趋势图(整体平稳趋势)
|
最新CiteScore值
|
0.74
=
引文计数(2018)
文献(2015-2017)
=
121次引用
164篇文献
|
||||||||||
文献总数(2014-2016) | 164 | ||||||||||
被引用比率
|
38% | ||||||||||
SJR
|
0.605 | ||||||||||
SNIP
|
1.139 | ||||||||||
CiteScore排名
|
|
||||||||||
CiteScore趋势图 |
CiteScore趋势图
|
||||||||||
scopus涵盖范围 |
scopus趋势图
|
本刊同领域相关期刊
|
|
期刊名称 | IF值 |
THEORY OF COMPUTING SYSTEMS | 0.5 |
ASTERISQUE | 1.1 |
POSITIVITY | 1 |
COMBINATORICA | 1.1 |
ACTA NUMERICA | 14.2 |
SEMIGROUP FORUM | 0.7 |
ACTA ARITHMETICA | 0.7 |
ACTA MATHEMATICA | 3.7 |
ARS COMBINATORIA | 0.263 |
本刊同分区等级的相关期刊
|
|
期刊名称 | IF值 |
ASTERISQUE | 1.1 |
POSITIVITY | 1 |
Open Mathematics | 1.7 |
RAMANUJAN JOURNAL | 0.7 |
POTENTIAL ANALYSIS | 1.1 |
Journal of Topology | 1.1 |
SBORNIK MATHEMATICS | 0.8 |
ADVANCES IN GEOMETRY | 0.5 |
DISCRETE MATHEMATICS | 0.8 |
分享者 | 点评内容 |